Dynamic Modeling of Damping Effects in Highly Damped Compliant Fingers for Applications Involving Contacts

نویسندگان

  • Chih-Hsing Liu
  • Kok-Meng Lee
چکیده

In many industries, it is often required to transfer objects using compliant fingers capable of accommodating a limited range of object shapes/sizes without causing damage to the products being handled. This paper presents a coupled computational and experimental method in time domain to characterize the damping coefficient of a continuum structure, particularly, its applications for analyzing the damping effect of a highly damped compliant finger on contact-induced forces and stresses. With the aid of Rayleigh damping and explicit dynamic finite element analysis (FEA), this method relaxes several limitations of commonly used damping identification methods (such as log-decrement and half-power methods) that are valid for systems with an oscillatory response and generally estimate the damping ratio for a lumped parameter model. This damping identification method implemented using off-the-shelf commercial FEA packages has been validated by comparing results against published data; both oscillatory and nonoscillatory responses are considered. Along with a detailed discussion on practical issues commonly encountered in explicit dynamic FEA for damping identification, the effects of damping coefficients on contact between a rotating compliant finger and an elliptical object has been numerically investigated and experimentally validated. The findings offer a better understanding for improving grasper designs for applications where joint-less compliant fingers are advantageous. [DOI: 10.1115/1.4005270]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Response Analysis of Fractionally Damped Beams Subjected to External Loads using Homotopy Analysis Method

This paper examines the solution of a damped beam equation whose damping characteristics are well-defined by the fractional derivative (FD). Homotopy Analysis Method (HAM) is applied for calculating the dynamic response (DR). Unit step and unit impulse functions are deliberated for this analysis. Acquired results are illustrated to show the movement of the beam under various sets of parameters ...

متن کامل

A Multi-Objective HBMO-Based New FC-MCR Compensator for Damping of Power System Oscillations

In this paper, a novel compensator based on Magnetically Controlled Reactor with Fixed Capacitor banks (FC-MCR) is introduced and then power system stability in presence of this compensator is studied using an intelligent control method. The problem of robust FC-MCR-based damping controller design is formulated as a multi-objective optimization problem. The multi-objective problem is concocted ...

متن کامل

Analytical Study of Dynamic Response of Railway on Partial Elastic Foundation under Travelling Accelerating Concentrated Load

The dynamic response of the railway under accelerated moving load using Dynamic Green Function is presented in this paper. For this purpose, an exact and direct modeling technique is introduced for the railway modeling as the damped Euler-Bernoulli beam on the partial Winkler foundation with arbitrary boundary conditions subjected to the moving load. The effects of the elastic coefficient of Wi...

متن کامل

Damped Vibrations of Parabolic Tapered Non-homogeneous Infinite Rectangular Plate Resting on Elastic Foundation (RESEARCH NOTE)

 In the present paper damped vibrations of non-homogeneous infinite rectangular plate of parabolically varying thickness resting on elastic foundation has been studied. Following Lévy approach, the equation of motion of plate of varying thickness in one direction is solved by quintic spline method. The effect of damping, elastic foundation and taperness is discussed with permissible range of pa...

متن کامل

زمان میرایی نوسانات عرضی کینک مشاهده شده در حلقه های تاج نواحی فعال با استفاده از تلسکوپ ای آی ای نصب شده بر اس دی او

A coronal loop can be oscillated in various directions. A basic type of coronal loop oscillation is called transverse oscillation that can be caused by different factors, such as nearby active regions and flares. The damping of transverse oscillation may be produced by the dissipation mechanism or the wake of the traveling disturbance. The aim of this paper is to estimate the damping time of tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011